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Chapter 6   Reflection and Transmission of Waves 

 

6.1 Boundary Conditions 

 

At the boundary of two different medium, electromagnetic field have to satisfy physical condition, which is 

determined by Maxwell’s equation. This is the boundary condition to be applied to any electromagnetic field. 

 

n H H J1 2 S× − =( )   (6.1.1) 

n E E1 2× − =( ) 0   (6.1.2) 

n D D1 2⋅ − =( ) ρ S   (6.1.3) 

n B B1 2⋅ − =( ) 0    (6.1.4) 

 

From the Maxwell’s equation, we can find these four boundary conditions. Here n  denotes the unit normal 

vector to the boundary surface. Physical meanings of these equations can be described as follows. The tangential 

electric field E  is continuous across the boundary surface. The discontinuity in the tangential magnetic field 

H  is equal to the surface current J S . The normal component B  is continuous across the boundary surface. 

The discontinuity in the normal component of D  is equal to the surface charge density ρ S . 

 

6.2 Reflection and Transmission at a Dielectric Interface 

 

In section 5.2, we descried a plane wave in 

two-dimensional space. Now we consider a 

plane wave impinges upon a plane dielectric 

interface, as shown in Figure. When the 

incident wave impinges on the boundary at an 

oblique angle, the normal of the boundary and 

the incident ray form a plane called the plane of 

incidence. The E  field of the incident wave 

may be polarized perpendicular or parallel to 

the plane of incidence. 

 

We now consider a perpendicularly polarized 

incident wave. The incident wave can be expressed as: 

 

E yi jk x jk zE e x z= − −
0    (6.2.1) 

H x zi
z x

jk x jk zk k E e x z= − + − −( ) 0

1ωµ
   (6.2.2) 

 

The reflected wave is given by 
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E yr
I

jk x jk zR E e rx rz= − +
0    (6.2.3) 

H x zr
rz rx

I jk x jk zk k R E e rx rz= + + − +( ) 0

1ωµ
  (6.2.4) 

where RI  is the reflection coefficient for the wave. The wave vector of the reflected wave is 

 

k x zr = −k krx rz     (6.2.5) 

 

And the transmitted wave is give by 

 

E yt
I

jk x jk zT E e tx tz= − −
0    (6.2.6) 

H x zt
tz tx

I jk x jk zk k T E e tx tz= − + − −( ) 0

2ωµ
  (6.2.7) 

 

where TI  is the transmission coefficient. When neither of two media is a perfect conductor, the surface current 

J S = 0 . Then, the boundary conditions (6.1.1) and (6.1.2) require that both the tangential electric field and 

magnetic field components be continuous at z = 0 . We thus have 

 

e R e T ejk x
I

jk x
I

jk xx x tx− − −+ =     (6.2.8) 

− + = −− − −k e k R e k T ez jk x rz
I

jk x tz
I

jk xx rx tx

ωµ ωµ ωµ1 1 2

 (6.2.9) 

 

these equations have to be satisfied for all values of x. The consequence is that 

 

 k k kx rx tx= =      (6.2.10) 

 

It means that the tangential component of the three wave vectors k , kr , and kt  are equal. This condition is 

known as the phase matching condition. 

 

We can obtain the magnitude of the three wave vectors by substituting the solution for Ei , Er  and E t  into 
the wave equation 

 

( )∆ +
RST

UVW
=ω µ ε2

1 1 0
E
E

i

r     (6.2.11) 

( )∆ + =ω µ ε2
2 2 0Et     (6.2.12) 

 

We find 

 

k k kx z
2 2 2

1 1 1
2+ = =ω µ ε     (6.2.13) 
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k k krx rz
2 2 2

1 1 1
2+ = =ω µ ε     (6.2.14) 

 

and  

k k ktx tz
2 2 2

2 2 2
2+ = =ω µ ε     (6.2.15) 

 

From the phase matching condition we find k k kx rx tx= =  and k kz rz= . Using these result in (6.2.8) and 

(6.2.9) we obtain  

 

1+ =R TI I      (6.2.16) 

1 1

2

− = −R k
k

TI
tz

z
I

µ
µ

    (6.2.17) 

 

and solving these equations for RI  and TI  gives: 

 

R k k
k kI

z tz

z tz

=
−
+

µ µ
µ µ

2 1

2 1

    (6.2.18) 

T k
k kI

z

z tz

=
+

2 2

2 1

µ
µ µ

    (6.2.19) 

Referring to the angle of incidence θ  and (5.2.2),  

 

k kx = 1 sinθ      (6.2.20a) 

k krx r= 1 sinθ      (6.2.20b) 

k ktx t= 2 sinθ      (6.2.20c) 

 

Substituting these equations into the phase matching condition, (6.2.10), we find 

 

k k kr t1 1 2sin sin sinθ θ θ= =    (6.2.21) 

 

The first equal sign states that θ θr = , that is the angle of reflection is equal to the angle of incidence. By using 

the definition used in optics, refractive indices 

 

 n c c k1 1 1 1= =µ ε
ω

    (6.2.22a) 

n c c k2 2 2 2= =µ ε
ω

    (6.2.22b) 

the phase matching condition k ktx x=  gives rise to  

 

 n n t1 2sin sinθ θ=     (6.2.23) 

this is the Snell’s law. 
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The phase matching condition can be represented graphically. When n n1 2< , we can find vectors kr , and kt  

for the given k . However, when n n1 2> , for the angle greater than θ c , kx  is larger than the magnitude of 

k2 . In that case, 

2 2 2
2 0tz xk k k= − <     (6.2.24) 

or 

  k jtz = ± α     (6.2.25) 

with α = −k kx
2

2
2  being a positive real number. In this case, the wave attenuates exponentially in the +z  

direction. The transmitted electric field can be given by 

 

 E yt = − −TE e ez jk xx
0

α     (6.6.26) 

which represents a no uniform plane wave or a surface wave. For example, the permittivity of the water at optical 

frequency is 177 0. ε  and the critical angle is given by θ c = = °−sin (
.

)1 1
177

49 . 
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An incident wave of arbitrary polarization can be decomposed into two waves having perpendicular and parallel 

polarizations. The electric filed of the perpendicularly polarized wave is perpendicular to the plane of incidence, 

and the parallel polarized wave’s electric field is parallel to that plane. We now consider a parallel polarized 

incident wave. The situation of electric and magnetic field is shown in the figure and thy can be described by 

 

H yi jk x jk zH e x z= − −
0      (6.2.27) 

E x zi
z x

jk x jk zk k H e x z= − − −( ) 0

1ωε
    (6.2.28) 

H yr
II

jk x jk zR H e rx rz= − +
0      (6.2.29) 

E x zr
rz rx

II jk x jk zk k R H e rx rz= − − − +( ) 0

1ωε
   (6.2.30) 

H yt
II

jk x jk zT H e tx tz= − −
0      (6.2.31) 

E x zt
tz tx

II jk x jk zk k T H e tx tz= − − −( ) 0

2ωε
    (6.2.32) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where RII  and TII  are , respectively, the reflection and transmission coefficients for the magnetic field vector 

for the parallelly polarized wave. They can be given by applying the boundary condition to (6.2.27) to (6.2.32) as: 

 

T k
k kII

z

z tz

=
+

2 2

2 1

ε
ε ε

     (6.2.33) 

R k k
k kII

z tz

z tz

=
−
+

ε ε
ε ε

2 1

2 1

     (6.2.34) 

 

From (6.2.33), when µ µ1 2= , RII = 0  gives 

 

ω µ ε θ ω µ ε θ1 2 1 1cos cosb t=     (6.2.35) 
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and the phase matching condition gives 

 

 ω µ ε θ ω µ ε θ1 1 1 2sin sinb t=     (6.2.36) 

 

Solving the above two equations, we find θ θ π
t b+ =

2
 and  

 θ ε
εb =

−tan 1 2

1

      (6.2.37) 

where the incident angle θ b  is called Brewster angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflection power as a function of incident angle.  

The martial is glass with ε ε= 2 25 0. . The Brewster angle is 56° . 

 

 

 

 

 

 

 

 

A gas laser with Brewster window 
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6.3 Standing Waves 

 

The complex permittivity is defined as (4.6.4) and is given by 

ε = −ε σ
ω

j      (6.3.1) 

The perfect conductor is a medium with infinite conductivity. And from (6.3.1) we find that the perfect conductor 

can be regarded as a medium with infinite permittivity. Substituting ε 2 →∞  and ktz ≈ → ∞ω µε 2  we 

obtain 

 

RI = −1      (6.3.2) 

RII = 1      (6.3.3) 

 

Consider a perfectly conducting half-space as shown in figure. A uniform plane wave impinges normally on the 

boundary is given by 

 

E xi = −E e jkz
0   (6.3.4) 

H yi =
F
HG

I
KJ

−E e jkz0

0η
 (6.3.5) 

And the reflected wave is given by: 

 

E xr jkzE e= − 0   (6.3.6) 

H yr =
F
HG

I
KJ

E e jkz0

0η
  (6.3.7) 

The total electromagnetic field in medium 1 is the 

sum of the incident and the reelected waves 

 

E x x= − = −−E e e jE kzjkz jkz
0 02( ) sin    

(6.3.8) 

H y y= + =
F
HG

I
KJ

−E e e E kzjkz jkz0

0

0

0

2
η η

( ) cos

    (6.3.9) 

The boundary condition (6.1.1) sates at z=0 gives the surface current on the perfect conductor. 

 

J z H xS = − × =( ) 2 0

0

E
η

   (6.3.10) 
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The instantaneous values of electric ad magnetic field are given by: 

 

E x= 2 0E kz tsin sinω    (6.3.11) 

H y=
F
HG

I
KJ2 0

0

E kz t
η

ωcos cos   (6.3.12) 

and they are plotted in the figure. These patters are called standing-wave patters because the waveform does not 

shift in space as time processes. 

 

6.4 Standing Wave in front of a Dielectric Medium 

 

Consider a uniform plane wave impinges on a plane dielectric interface. The total E  field in medium 1 is given 

as: 

 

E y1 0
1 1= +−E e R ejk z

I
jk z( )    (6.4.1) 

 

and the E  field in medium 2 is 

 

E y2 0
2= −T E eI

jk z     (6.4.2) 

 

The reflection and the transmission coefficients are given by (6.2.18) and (6.2.19). Assume that medium 1 is air 

and medium 2 is soil characterized by ε ε= 10 0 , σ = 0 01. /S m , and µ µ= 0 . When the frequency is 50MHz, 

we have: 

 

k k kz = = =cos .θ 1 1048    (6.4.3) 

k k k k jz x1 2
2 2

2 3365 0587= − = = −. .  (6.4.4) 

R eI
j= °0537 173 4. .     (6.4.5) 

 T eI
j z= −0 471 0 587. .    (6.4.6) 

 

Substituting the RI  value in (6.4.2) we have 

 

E E ey
j k z

1 0
2 173 41 0537 1= + + + °. ( . )  (6.4.7) 

and similarly,  

 

E E ey
z

2 0
0 5870 471= −. .   (6.4.8) 


